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Abstract-In this paper we examine the path-independence of certain integrals in circular cylindrical shells
and shells of revolution. It is shown that a circular cylindrical shell has at least two conservation laws
associated with its translational and rotational invariance while for a shell of revolution, we find that there
is a conservation law derived from invariance to rotation. Next, we relate these integrals 10 energy release
rates associated with translation and rotation of a cavity. An example is then considered and extension of
these path-independent integrals to nonlinear membrane theory is carried oul.

NOTATION
b.1l second fundamental (curvature) tensor = N :"xt.J,
~ metric tensor of the undeformed shell =x:"xt.J,
I.Il metric tensor of the deformed shell
ds an: Ienath element

dA surface area element
N' unit normal to surface
x:' surface base vectors
R radius of the cylinder
h thickness of the shell
A = [3/4(1 - vZ»)"~ cly'(Rh)

INTRODUCTION
Conservation laws (or path-independent integrals) for linear and non-linear elastic materials
have been considered by various authors [1-4]. One of these integrals, the J integral, has since
been applied extensively to fracture mechanics with much success. In this paper, we examine
similar type of integrals for cylindrical and axisymmetric shells in the context of thin shell
theory obeying Kirchoff's hypothesis. Path-independent integrals in shells have been con
sidered by Bergez and Radenkovic[S] and Bergez[6]. However, it appears that they have not
placed any restriction's on the geometry of the shells and based on the considerations on
invariance in this study, such integrals are not path independent in general. Studies made by
Knowles and Stemberg[2] show that conservation laws are derived from the invariance of a
variational principle to a group of transformations which corresponds to translation, rotation
and expansion. One would not, therefore, expect path-independent integrals to exist in general
for shells except those which enjoy a high degree of symmetry.

In this paper, it is shown that J and related integrals, generalized in an appropriate manner,
are path independent for circular cylindrical and axisymmetric shells in the context of linear
elastic shell theory as well as nonlinear membrane theory. These integrals are also related to
energy release rates associated with translation and rotation. Finally, one of the integrals is
applied to an example to illustrate its application.

Lines of curvature coordinates (tl =z, t2 =6) are implied throughout the paper although
general tensor forms will be used for simplicity. The summation convention will apply
whenever repeated indexes are indicated with Greek indexes having range 2 and Latin indexes,
3. Contravariant and covariant components of a surface tensor will be denoted by Greek
superscripts and subscripts, respectively. Commas will denote covariant differentiation of a
tensor or ordinary differentiation of a scalar. In the case of a non-linear membrane theory,
covariant differentiation will be based on the geometry of the undeformed shell. 3D Cartesian
components are denoted by Latin indexes.
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LINEAR SHELL THEORY

The starting point of the study is the linear elastic shell theory of Budiansky and Sanders [7]
and Koiter[8]. Only the essentials of the theory are given here and details can be found in [7].
The displacement vector V' of a material point in the middle surface of the shell is given by

V' = u"'x i + wN','" (I)

where u"'. w are the surface and surface-normal components of the displacement vector. The
membrane and bending strain measures E"'/J' K"'/J are given in terms of these components u"'. w
by

I
Ea/J = '2 (u",./J +u/J.a) +bafJw

Ka/J = ~ (4)'''./J + 4>/J.",) + ~ (ba'w,/J + b/J'w,a)

(2)

(3)

(5)

where the rotation 4>a =- W.a+ba'u., and the rotation-about-the-normal tensor WafJ =
(1/2)(ua.fJ-u/J,a)' The conjugate stress variables are the symmetrical modified membrane
tensor NafJ and bending moment MafJ which are adopted here for reasons enunciated in [7]. In
the absence of surface loads, they satisfy the following equilibrium equations

N afJ +b fJMa, +! (b fJMa, - b aM,fJ) = 0
,a , .'" 2' , ,,,, (4)

M:'!fJ - b"'/JNafJ =O.

As shown in [7], there are several stress measures which one can adopt. The above tensors
(MafJ, NafJ ) are chosen mainly because they satisfy the Principle of Virtual Work exactly when
deformations are assumed to satisfy the Kirchoff's hypothesis. and they yield an exact
static-geometric analogy. These properties shared by the stress-resultant NafJ and moment
tensor MafJ are not limited to cylindrical shells and they remain valid in general linear elastic shell
theory,

PATH~NDEPENDENTINTEGRALS

Consider deformations with displacements Ua , W on the middle surface of a circular
cylindrical shell. Let S be a simply connected region on the middle surface boundary by a
smooth closed curve C. The integrals considered in this paper are

JA=fc {WnA - [fa ~~~ +MnY!(n), A+Q:;]} ds

where A=1 and 2 refer respectively to the axial and circumferential co-ordinates. The strain
energy density per unit area is denoted by Wand on the contour C, the traction terms are

- a a4>'"
Q =M"'1nfJ +as (MafJnalfJ ), Y!(n).A =a~A na

Mn =MafJnanlJ' M, =- MaIlnallJ.

(6)

(7)

(8)

The term fa is the effective membrane force/length, Qis the effective transverse force/length,
Mn is the normal bending moment, M, the twisting moment and ta is the unit tangent vector
while lIa is the unit normal (in S) to C. For a circular cylinder, the integral JA in eqn (5) for A=I
and 2 and vanishes for all closed smooth paths C when the energy density W for a Hookean
material is a quadratic function of the strains EafJ, KalJ

W =~ [1 :h1l2 ] [(1- II) EafJEafJ + IIEaaEll + 2~ [/:h:2] [(1- II) KaIlKalJ + IIK.,"Kl]. (9)
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Proof of the path independence of the integral JA is straightforward and the details are shown in
Appendix 1. The result follows from ttie use of the following Divergence Theorem:

(10)

when holds for a circular cylinder in Iines-of-eurvature coordinates in which y'(g) =det (gall) =
R, the radius of the cylinder, is a constant. Use is also made of the following property for a
circular cylinder, satisfied also by a spherical surface,

(11)

i.e. the covariant derivative of the second fundamental tensor vanishes for all coordinate
systems. The conservation law (5) actually follows directly from the Principle of Virtual
Work if one considers (aualafA, awlafA) as an admissible set of displacements for fixed A.

ENERGY RELEASE RATES

While the proof of the path independence of the integrals in (5) is straightforward, it does
not afford any particular physical insight in the interpretation of these conservation laws. In this
section we relate the integrals in (5) to energy release rates associated with cavity translation and
rotation, thus identifying them with the corresponding conservation laws in elasticity[2, 3].

from the paper by Budiansky and Rice[3], one has the expression for the energy release
rate G of a 3D body as

GBt= LWn' bdA (12)

where W is the strain energy per unit volume, n is the unit normal to the cavity S, Bx is a virtual
displacement of a portion of the boundary Sand t is a time-like parameter. By analogy, on the
middle surface of a two-dimensional thin shell, we have the energy release rate related to a line
integral

GBt =LWn' Bx ds (13)

where now W is the strain energy per unit area of the middle surface and r is the portion of the
cavity with nonzero 8x. It is clear then the integral J. (A =Uin eqn (5) for a circular cylindrical
shell corresponds to the energy release rate of a cavity translating in the axial direction with 8x
as any constant vector in that direction. One expects the conservation law JJ to hold because of
the translational invariance of the cylinder. However, it is not obvious that J2 (A =2) in eqn (5)
in the circumferential direction is a generalization of the J integral in the plane and hence that it
should be path independent at all. On the other hand, we do expect that there is rotational
invariance about the axis of the cylinder. Here the path independence of J2 is rationalized by
relating the integral to energy release rate associated with the rotation of a cavity about the cylin
der axis.

A rotation about the cylinder axis can be written as

8x =(OE.) x (RN) (14)

where 0 is the magnitude of the rotation vector (arbitrary) and N is a unit outer normal to the
cylindrical surface, "J is a base (unit) vector in the z direction. Consequently, 8x is in the E2

(circumferential) direction and the expression for the energy release rate in (13) may be written
as

55 Vol. 16. No. I-C

G8t=(-OR)LWn2ds. (IS)
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If we now apply the Divergence Theorem (10) to eqn (15), we have

G5t=(-nR)J2 (16)

and J2 can be evaluated on any closed contour C surrounding the cavity. We see, therefore, that
J2 for the cylinder has the same interpretation as the L integral [2, 3] in elasticity as the energy
release rate associated with cavity rotation about the z axis.

By relating the integral J2 to the energy release rate associated with rotation, one would
expect that path independence of J2 should continue to hold for shells of revolution. That this is
indeed the case can be shown by examining eqn (10) and the curvature tensor b~a which, in
Iines-of-curvature coordinates of a shell of revolution, is a function of the axial coordinate
~I =z only. For axisymmetric surfaces, the Divergence Theorem (10) still holds for A =2
because g = det (g../J) is also a function of z only. Therefore, we have ab,tla~2 =0 so that the
same proof applied to a cylindrical shell goes through for this case as well. However, we do not
anticipate the conservation law J. to remain valid as there is no translational invariance in the
axial direction for an arbitrary axisymmetric surface.

AN EXAMPLE

To illustrate the use of the conservation law J2 in eqn (5), we consider an example in which
we estimate the crack opening displacement of a circumferential crack in a circular cylindrical
shell under axial tension with a Dugdale type plastic zone. Application of J. was demonstrated
by Amazigo[9], who made use of the path independence implicitly. We assume the length of the
crack to be 2c and a line plastic zone of length p ahead of the crack tip. We make use of the
results of Duncan-Fama and Sanders [10] in which the aforementioned geometry under
membrane loading is considered on the basis of shallow shell theory of Marguerre. Hence the
results are only valid for short cracks (ciR < I). Further, we assume a small scale yielding
situation (pic ~ 1) in which the membrane stress and bending moment singularities govern the
far field behavior of a semi-infinite crack so that the effects of curvature enter only through the
strengths of these singularities S, B (see eqn (17) below). Let the prescribed axial membrane
stress be N... The asymptotic field near the crack tip of a finite-length circumferential crack is
[10, II].

Nzz - hK' S/y'(21Tr) as r~O, 0=0
(17)

where K' =y'(1Tc)(N../h) and r, 0 are the polar coordinates with the crack tip as the origin and
0=0 is the extension of the crack axis. Using eqn (5) and the asymptotic fields in (17), we can
calculate J2 as in [9],

(18)

where E is Young's modulus and a2 is a constant of 0'(1) which depends on Poisson's ratio.
From [10], the contribution from the strength of the bending singularity B is relatively small
compared to the corresponding membrane stress term S (BIS =- 0.1). Consequently as a first
approximation, we neglect the bending term in (18) and set J2 as

(19)

The term S is known [10] as a function of the curvature parameter'\ =[(3/4)(1- ~)]1f4(cly'(Rh».

We now collapse the contour onto the line plastic zone, so that the only contribution is from the
contour enclosing the strip yield zone. Since in general bending as well as stretching are
involved, one should adopt a yield criterion as in [12] throughout the plastic zone,

(20)
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Fig. I. Crack opening displacement.
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where u, is the yield stress of the material. However, we note from [12] that the bending term
6/Mlhl for a circumferential crack is again small compared to stretching N. As a first
approximation and consistent with the assumption we made earlier for the far field, we assume
that throughout the plastic zone, there is only the constant membrane stress-resultant N =M,.
The integral can then be easily evaluated to give

(21)

where 8 is the crack opening displacement. Making use of the path independence of J2, we
equate eqns (19) and (21) to give

(22)

where the strength of the membrane stress singularity S is given in [10] as a function of the
curvature parameter A. This gives a first order correction of the crack opening displacement due
to' curvature as shown in Fig. 1.

NONLINEAR MEMBRANE THEORY

It is found that similar conservation laws exist for a nonlinear membrane circular cylindrical
shell, although the practical applicability in this case is doubtful. We restate here briefly the
main ingredients for a nonlinear membrane theory. Details can be found in [13]. The finite strain
measure £aII given by

(23)

where the linear part of the stretching strain Eall is given in (2), t/J. is the same rotation as
before and

(24)

Along any curve C with normal n. (in S) in the undeformed state, the edge force per unit
undeformed length Q' is

Q'= T·.l'~+QNj (25)

where

T. = (gall +~)nWIn"
(26)

Q. - t/J-"alln•
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The Kirchoff stress-resultant na~ is related to the membrane stress-resultant by

(27)

where g == det (ga~)' The path-independent integrals are then given by

(28)

where now W is the strain energy per unit undeformed area of the middle surface such that it is
related to the Kirchoff stress resultant by

(29)

(AI)

The proof of the conservation law (28) is given in Appendix 2.
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APPENDIX I

Prool 01 path independence 01 JA lor a cylindrical shell
To prove the pathe independence of JA, we apply the Divergence Theorem in (10) and eqns (6-9) to (5) to obtain the

surface integral over S bounded by, C,

J = ( {Ma' oKaB +N~~_(NoB 0110) - (Ma' !h)
A Js oEA oEA of' " oEA

..

-(Ma, ow) _! [!!!L(b BMa'-b aM")] }dA"oEA ,,20EA
' , .. '

Next, we make use of the strain-displacement relations (2), (3) and eqn (II) which expresses the fact the circular cylinder
has a covariantly constant curvature tensor bl and obtain

(A2)
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After canceling certain terms performing some algebraic simplifications, we finally have

J. =L{-:;: [N'+b_aM~+~(b:Mo'-b:M"')'" J- :; (M~-bo_N«-)}dA

707

(A3)

and JA vanishes because of the equilibrium eqns (4).
For axisymmetric shells, y(g) =R(zlV(I +R'(z~) is a function of E1=z only and hence (DgfDE') =O. Also in the same

Iines-of-curvature coordinates (DblIDf2) =0 so that the same proof above can be used in this case for ,\ = 2.

APPENDIX 2
Path illtltptlldtllct lor a 1I0ll1intar mtmbrant cylindrical shtll

For nonlinear membrane theory, the equilibrium equations when no pressures loads are present are [I3},

[(,.... +~)n·-] - b.,..._n-- =0

-(.""•• ).. - b..(g +~)n..=O.

(A4)

(AS)

(A7)

The above equations are exact and are derivable from the Principle of Virtual Work applied to the deformed shell.
Since the intepals in (28) are referred to the undeformed geometry of the circular cylinder, we can again apply the

Divergence Theorem (10) with y(g)= R, radius of the underformed cylinder. This gives

J. =L{II" a$'-[(6.,+d:'/l)no.]... ~-(6"+d:'/l)II.- xD~f +~"1Y+{."n ..).. :; }dA. (A6)

Now using the nonlinear strain-displacement relation and applying the equilibrium equations (A6), (A7) give, after lfOIIPing
certain terms together,

J 1{..(~ d Dd1 .I. !!i) [._.1. D.. ..(~. d" (~ b aW)]}dA.= s n afA + .... atA +'I'·atA - n 'I'-atA+n "- + ..) atA + ""atA .

Using the symmetry of n°· and expressing £... d._ in terms of the displacements provide the result that JA vanishes for all
closed paths C.


